\( \text{IO}_2^- \)
Step 1: Identify the oxidizing and reducing agents
In this redox reaction: - \( \text{MnO}_4^- \) (permanganate ion) acts as the \textit{oxidizing agent} (it gets reduced). - \( \text{I}^- \) (iodide ion) acts as the \textit{reducing agent} (it gets oxidized).
Step 2: Understand the medium and expected products
The products of redox reactions involving permanganate ion depend on the reaction medium: - In acidic medium: \( \text{MnO}_4^- \rightarrow \text{Mn}^{2+} \) - In basic medium: \( \text{MnO}_4^- \rightarrow \text{MnO}_4^{2-} \) - In neutral medium: \( \text{MnO}_4^- \rightarrow \text{MnO}_2 \) So, since this is a neutral medium, permanganate will be reduced to \( \text{MnO}_2 \).
Step 3: Oxidation of iodide ion \( \text{I}^- \)
The iodide ion is oxidized to iodate ion \( \text{IO}_3^- \) in a neutral medium. This is a known redox behavior under these conditions.
Step 4: Balanced redox reaction
The balanced reaction is: \[ 2 \text{MnO}_4^- + \text{I}^- + \text{H}_2\text{O} \rightarrow 2 \text{MnO}_2 + \text{IO}_3^- + 2 \text{OH}^- \] This confirms that one of the products is \( \text{IO}_3^- \), the iodate ion.
Final Answer: \( \boxed{\text{IO}_3^-} \)
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is