To find the 'spin only' magnetic moment of \(MO_4^{2-}\), where \(M\) is a metal with the least metallic radii among \(\text{Sc, Ti, V, Cr, Mn, Zn}\), follow these steps:
Step 1: Determine the Metal \(M\)
Step 2: Determine D-electrons for \(\text{Zn}^{2+}\)
Step 3: Calculate the Magnetic Moment
Step 4: Confirm the Solution
Conclusion: The 'spin only' magnetic moment value of \(MO_4^{2-}\) where \(M = \text{Zn}\) is 0 BM.
Among the given elements, Cr has the least metallic radii. The CrO$_4^{2-}$ ion has Cr$^{6+}$, which has a $d^0$ configuration (diamagnetic).
The spin-only magnetic moment:
\[\mu = \sqrt{n(n+2)} \, \text{BM},\]
where $n = 0$.
Final Answer:
\[0 \, \text{BM}.\]
Match List - I with List - II:
List - I:
(A) \([ \text{MnBr}_4]^{2-}\)
(B) \([ \text{FeF}_6]^{3-}\)
(C) \([ \text{Co(C}_2\text{O}_4)_3]^{3-}\)
(D) \([ \text{Ni(CO)}_4]\)
List - II:
(I) d²sp³ diamagnetic
(II) sp²d² paramagnetic
(III) sp³ diamagnetic
(IV) sp³ paramagnetic
Let one focus of the hyperbola \( H : \dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1 \) be at \( (\sqrt{10}, 0) \) and the corresponding directrix be \( x = \dfrac{9}{\sqrt{10}} \). If \( e \) and \( l \) respectively are the eccentricity and the length of the latus rectum of \( H \), then \( 9 \left(e^2 + l \right) \) is equal to:
