To find the 'spin only' magnetic moment of \(MO_4^{2-}\), where \(M\) is a metal with the least metallic radii among \(\text{Sc, Ti, V, Cr, Mn, Zn}\), follow these steps:
Step 1: Determine the Metal \(M\)
Step 2: Determine D-electrons for \(\text{Zn}^{2+}\)
Step 3: Calculate the Magnetic Moment
Step 4: Confirm the Solution
Conclusion: The 'spin only' magnetic moment value of \(MO_4^{2-}\) where \(M = \text{Zn}\) is 0 BM.
Among the given elements, Cr has the least metallic radii. The CrO$_4^{2-}$ ion has Cr$^{6+}$, which has a $d^0$ configuration (diamagnetic).
The spin-only magnetic moment:
\[\mu = \sqrt{n(n+2)} \, \text{BM},\]
where $n = 0$.
Final Answer:
\[0 \, \text{BM}.\]
The metal ions that have the calculated spin only magnetic moment value of 4.9 B.M. are
A. $ Cr^{2+} $
B. $ Fe^{2+} $
C. $ Fe^{3+} $
D. $ Co^{2+} $
E. $ Mn^{2+} $
Choose the correct answer from the options given below
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $