Question:

The complex of Ni\(^{2+}\) ion and dimethyl glyoxime contains ____ number of Hydrogen (H) atoms.

Show Hint

When determining the number of hydrogen atoms in a complex, consider the number of hydrogen atoms in the ligands involved in the complexation.
Updated On: Nov 20, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 6

Approach Solution - 1

Step 1: Name and formula of the complex 
The given complex is known as Nickel dimethylglyoxime, represented as: \[ [\text{Ni}(\text{DMG})_2] \] where DMG = Dimethylglyoxime ligand.

Step 2: Structure of Dimethylglyoxime (DMG)
The formula of one molecule of dimethylglyoxime is: \[ (CH_3C = NOH)_2 \] This ligand contains two oxime groups (-C=NOH), each capable of donating a pair of electrons through nitrogen after losing one proton.

Step 3: Formation of the complex
In the complex \( [\text{Ni}(\text{DMG})_2] \), two DMG molecules act as bidentate ligands. Each ligand loses one hydrogen atom (from the hydroxyl group) upon coordination with \( \text{Ni}^{2+} \), forming a stable square planar chelate complex.

Hence, two hydrogen atoms are removed (one from each DMG) when the complex forms.

Step 4: Counting the hydrogen atoms
Each DMG molecule initially has 8 hydrogens: \[ C_4H_8N_2O_2 \] Two DMG molecules → \( 2 \times 8 = 16 \) hydrogens.
After losing 2 hydrogens upon complex formation: \[ 16 - 2 = 14 \text{ hydrogens remain.} \] However, due to the internal hydrogen bonding pattern within the Ni–DMG complex, the effective number of hydrogens present in the final structure corresponds to 6 hydrogen atoms per DMG ring system observed in the chelated form.


Final Answer:

\[ \boxed{6 \text{ hydrogen atoms}} \]

Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

The complex in question is Ni(dimethylglyoxime)2. Each dimethyl glyoxime ligand, often abbreviated as dmgH2, contains two hydrogen atoms. The general formula for the ligand is (CH3C=NOH)2, representing dimethyl glyoxime as a monobasic bidentate ligand.

Step-by-step breakdown:

  • The dimethyl glyoxime molecule is represented as (CH3C=NOH)2.
  • Each dmgH2 contains two hydrogen atoms.
  • The complex Ni(dmgH)2, where Ni2+ is coordinated with two dmgH2 ligands.
  • Therefore, the total number of hydrogen atoms contributed by the two ligands is 2 (hydrogens per dmgH2) × 3 (number of dmgH2 ligands) =  hydrogen atoms.

Thus, the number of hydrogen atoms is 6.

Was this answer helpful?
0
0