The speed of sound v in a gas is given by:
\[ v = \sqrt{\frac{\gamma RT}{M}}, \]
where:
We are given:
\[ \gamma = 1.4, \quad R = 8.3 \, \text{J/K mol}, \quad T = 273 \, \text{K}, \quad M = 32 \times 10^{-3} \, \text{kg/mol}. \]
Substitute these values into the formula:
\[ v = \sqrt{\frac{1.4 \times 8.3 \times 273}{32 \times 10^{-3}}}. \]
Calculate the expression inside the square root:
\[ 1.4 \times 8.3 = 11.62, \]
\[ 11.62 \times 273 = 3173.26, \]
\[ \frac{3173.26}{32 \times 10^{-3}} = 99164.375. \]
Now take the square root to find v:
\[ v = \sqrt{99164.375} \approx 315 \, \text{m/s}. \]
The closest answer to this calculated value is: 310 m/s.
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: