Understanding the Problem
We are given that the speed of a wave (\(v\)) depends on wavelength (\(\lambda\)), acceleration due to gravity (\(g\)), and density (\(\rho\)). We need to find the exponents \(a\), \(b\), and \(c\) in the equation:
\( v = \lambda^a g^b \rho^c \)
Dimensional Analysis
1. Dimensional Formulas:
2. Substitute into the Equation:
\( [L T^{-1}] = [L]^a [L T^{-2}]^b [M L^{-3}]^c \)
3. Simplify:
\( [L T^{-1}] = [L^{a+b-3c} M^c T^{-2b}] \)
4. Equate Powers:
Solving the Equations
1. From the \(T\) equation:
\( -2b = -1 \)
\( b = \frac{1}{2} \)
2. From the \(M\) equation:
\( c = 0 \)
3. Substitute \(b\) and \(c\) into the \(L\) equation:
\( a + \frac{1}{2} - 3(0) = 1 \)
\( a + \frac{1}{2} = 1 \)
\( a = 1 - \frac{1}{2} = \frac{1}{2} \)
Final Answer
The values of \(a\), \(b\), and \(c\) are:
A wheel of a bullock cart is rolling on a level road, as shown in the figure below. If its linear speed is v in the direction shown, which one of the following options is correct (P and Q are any highest and lowest points on the wheel, respectively) ?
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: