Solution:
\((2y - 5)\frac{dy}{dx} = -3\)
\((2y - 5)dy = -3dx\)
\(2\cdot\frac{y^2}{2} - 5y = -3x + \lambda\)
Given: Curve passes through \((0, 1)\)
\(\implies \lambda = -4\)
Curve Equation:
\(\left(\frac{y - 5}{2}\right)^2 = -3\left(x - \frac{3}{4}\right)\)
Vertex of the Parabola:
\(\left(\frac{3}{4}, \frac{5}{2}\right)\)
Final Equation: \(2x + 3y = 9\)
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: