If the roots of the quadratic equation \( ax^2 + bx + c = 0 \) are real and equal, then:
You are given a dipole of charge \( +q \) and \( -q \) separated by a distance \( 2l \). A sphere 'A' of radius \( R \) passes through the centre of the dipole as shown below and another sphere 'B' of radius \( 2R \) passes through the charge \( +q \). Then the electric flux through the sphere A is
A polynomial that has two roots or is of degree 2 is called a quadratic equation. The general form of a quadratic equation is y=ax²+bx+c. Here a≠0, b, and c are the real numbers.
Consider the following equation ax²+bx+c=0, where a≠0 and a, b, and c are real coefficients.
The solution of a quadratic equation can be found using the formula, x=((-b±√(b²-4ac))/2a)
Read More: Nature of Roots of Quadratic Equation