If \( \alpha,\beta \) where \( \alpha<\beta \), are the roots of the equation
\[
\lambda x^2-(\lambda+3)x+3=0
\]
such that
\[
\frac{1}{\alpha}-\frac{1}{\beta}=\frac{1}{3},
\]
then the sum of all possible values of \( \lambda \) is:
Show Hint
In root-based problems, converting reciprocal conditions into expressions involving sum and product simplifies the algebra.
Concept:
Use relations between roots and coefficients and manipulate the given condition involving reciprocals.
Step 1: Use Vieta’s formulas
\[
\alpha+\beta=\frac{\lambda+3}{\lambda},\quad \alpha\beta=\frac{3}{\lambda}
\]
Step 2: Use the given condition
\[
\frac{1}{\alpha}-\frac{1}{\beta}=\frac{\beta-\alpha}{\alpha\beta}=\frac{1}{3}
\]
\[
\Rightarrow \beta-\alpha=\frac{\alpha\beta}{3}=\frac{1}{\lambda}
\]
Step 3: Square both sides
\[
(\beta-\alpha)^2=(\alpha+\beta)^2-4\alpha\beta
\]
\[
\frac{1}{\lambda^2}=\left(\frac{\lambda+3}{\lambda}\right)^2-\frac{12}{\lambda}
\]
\[
\Rightarrow (\lambda-3)^2=13
\]
Step 4: Find possible values of \( \lambda \)
\[
\lambda=3\pm\sqrt{13}
\]
Step 5: Find the required sum
\[
(3+\sqrt{13})+(3-\sqrt{13})=6
\]