At \( x = 0 \), for the function to be differentiable, we need both the left-hand limit (LHL) and the right-hand limit (RHL) to be equal, as well as the function values.
For \( x<0 \), \( f(x) = e^x + ax \), and for \( x \geq 0 \), \( f(x) = b(x-1)^2 \).
1. Left-hand limit (LHL):
\[
\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (e^x + ax) = e^0 + a(0) = 1.
\]
2. Right-hand limit (RHL):
\[
\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} b(x-1)^2 = b(0-1)^2 = b.
\]
For the function to be continuous, we require that LHL = RHL. Therefore, we have:
\[
1 = b \quad \Rightarrow \quad b = 1.
\]
3. Differentiability at \( x = 0 \):
The derivative from the left at \( x = 0 \) is:
\[
\lim_{x \to 0^-} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^-} \frac{e^x + ax - 1}{x} = \lim_{x \to 0^-} \frac{e^x - 1 + ax}{x}.
\]
Applying L'Hopital's Rule:
\[
= \lim_{x \to 0^-} \frac{e^x + a}{1} = e^0 + a = 1 + a.
\]
The derivative from the right at \( x = 0 \) is:
\[
\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{b(x-1)^2 - 1}{x} = \lim_{x \to 0^+} \frac{b(x^2 - 2x + 1) - 1}{x}.
\]
\[
= \lim_{x \to 0^+} \frac{-2bx}{x} = -2b.
\]
For the function to be differentiable, we require that LHL = RHL. Thus,
\[
1 + a = -2b = -2(1) = -2 \quad \Rightarrow \quad a = -3.
\]
Thus, the correct values are \( a = -3 \) and \( b = 1 \).
Thus, the correct answer is option (2).