Step 1: The matrix is:
\( \begin{pmatrix} e^t & e^{-t}( \sin t - 2 \cos t ) & e^{-t}( -2 \sin t + \cos t ) \\ e^t & e^{-t}( 2 \sin t + \cos t ) & e^{-t}( \sin t - 2 \cos t ) \\ e^t & e^{-t} \cos t & e^{-t} \sin t \\ \end{pmatrix} \)
For invertibility, the determinant should be non-zero:
\( \det\left( e^t \cdot e^{-t} \cdot e^{-t} \right) = \det \left( \begin{matrix} \sin t - 2 \cos t & -2 \sin t + \cos t \\ 2 \sin t + \cos t & \sin t - 2 \cos t \\ \cos t & \sin t \\ \end{matrix} \right) \)
This simplifies to:
\( e^t \cdot e^{-t} \cdot e^{-t} \neq 0 \)
Step 2: Applying the row operations: \( R_1 \rightarrow R_1 - R_2 \), \( R_2 \rightarrow R_2 - R_3 \)
We get:
\( e^{-t} \cdot \begin{pmatrix} 0 & -\sin t - \cos t & -3 \sin t + \cos t \\ 0 & 2 \sin t & -2 \cos t \\ 1 & \cos t & \sin t \\ \end{pmatrix} \neq 0 \)
Step 3: Now, expand the determinant:
\( e^{-t} \times 1 \left( 2 \sin t \cos t + 6 \cos^2 t + 6 \sin^2 t - 2 \sin t \cos t \right) \neq 0 \)
Conclusion: Therefore, we have:
\( e^{-t} \times 6 \neq 0 \)
Thus, the matrix is invertible for all values of \( t \in \mathbb{R} \).
A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.