The root mean square (rms) speed (\( V_{\text{rms}} \)) of gas molecules is given by:
\[ V_{\text{rms}} = \sqrt{\frac{3k_B T}{m}}, \]
where:
Substitute \( k_B = 1.4 \times 10^{-23} \, \text{J/K} \), \( T = 300 \, \text{K} \), and \( m = 4.6 \times 10^{-26} \, \text{kg} \):
\[ V_{\text{rms}} = \sqrt{\frac{3 \times 1.4 \times 10^{-23} \times 300}{4.6 \times 10^{-26}}}. \]
Simplify the numerator:
\[ 3 \times 1.4 \times 300 = 1260 \times 10^{-23} = 1.26 \times 10^{-20}. \]
Divide by the denominator:
\[ \frac{1.26 \times 10^{-20}}{4.6 \times 10^{-26}} = 2.73 \times 10^5. \]
Take the square root:
\[ V_{\text{rms}} = \sqrt{2.73 \times 10^5} \approx 523 \, \text{m/s}. \]
The root mean square speed of nitrogen molecules is approximately \( 523 \, \text{m/s} \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: