The root mean square (rms) speed (\( V_{\text{rms}} \)) of gas molecules is given by:
\[ V_{\text{rms}} = \sqrt{\frac{3k_B T}{m}}, \]
where:
Substitute \( k_B = 1.4 \times 10^{-23} \, \text{J/K} \), \( T = 300 \, \text{K} \), and \( m = 4.6 \times 10^{-26} \, \text{kg} \):
\[ V_{\text{rms}} = \sqrt{\frac{3 \times 1.4 \times 10^{-23} \times 300}{4.6 \times 10^{-26}}}. \]
Simplify the numerator:
\[ 3 \times 1.4 \times 300 = 1260 \times 10^{-23} = 1.26 \times 10^{-20}. \]
Divide by the denominator:
\[ \frac{1.26 \times 10^{-20}}{4.6 \times 10^{-26}} = 2.73 \times 10^5. \]
Take the square root:
\[ V_{\text{rms}} = \sqrt{2.73 \times 10^5} \approx 523 \, \text{m/s}. \]
The root mean square speed of nitrogen molecules is approximately \( 523 \, \text{m/s} \).
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32