\[ 64^{64} \Rightarrow (63 + 1)^{64} = 63\lambda + 1 \] \[ 64^{64^{64}} \Rightarrow (63 + 1)^{64^{64}} = 63\lambda_1 + 1 \] Therefore, the required remainder when divided by \(7\) is: \[ \boxed{1} \]
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.