We are given the refractive index of a liquid and the angle of an equilateral prism. We need to find the angle of minimum deviation.
Solution
1. Formula for Refractive Index at Minimum Deviation:
The refractive index \( \mu \) of the prism material is given by:
\( \mu = \frac{\sin \left( \frac{A + \delta_{\text{min}}}{2} \right)}{\sin \left( \frac{A}{2} \right)} \)
where:
2. Substitute Given Values:
Given \( \mu = \sqrt{2} \) and \( A = 60^\circ \), we have:
\( \sqrt{2} = \frac{\sin \left( \frac{60^\circ + \delta_{\text{min}}}{2} \right)}{\sin \left( \frac{60^\circ}{2} \right)} \)
\( \sqrt{2} = \frac{\sin \left( 30^\circ + \frac{\delta_{\text{min}}}{2} \right)}{\sin(30^\circ)} \)
3. Solve for \( \delta_{\text{min}} \):
We know \( \sin(30^\circ) = \frac{1}{2} \), so:
\( \sqrt{2} = \frac{\sin \left( 30^\circ + \frac{\delta_{\text{min}}}{2} \right)}{\frac{1}{2}} \)
\( \sin \left( 30^\circ + \frac{\delta_{\text{min}}}{2} \right) = \frac{\sqrt{2}}{2} \)
\( 30^\circ + \frac{\delta_{\text{min}}}{2} = \sin^{-1} \left( \frac{\sqrt{2}}{2} \right) = 45^\circ \)
\( \frac{\delta_{\text{min}}}{2} = 45^\circ - 30^\circ = 15^\circ \)
\( \delta_{\text{min}} = 2 \times 15^\circ = 30^\circ \)
Final Answer
Thus, the angle of minimum deviation \( \delta_{\text{min}} \) is \( 30^\circ \).

Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to: