We are given the refractive index of a liquid and the angle of an equilateral prism. We need to find the angle of minimum deviation.
Solution
1. Formula for Refractive Index at Minimum Deviation:
The refractive index \( \mu \) of the prism material is given by:
\( \mu = \frac{\sin \left( \frac{A + \delta_{\text{min}}}{2} \right)}{\sin \left( \frac{A}{2} \right)} \)
where:
2. Substitute Given Values:
Given \( \mu = \sqrt{2} \) and \( A = 60^\circ \), we have:
\( \sqrt{2} = \frac{\sin \left( \frac{60^\circ + \delta_{\text{min}}}{2} \right)}{\sin \left( \frac{60^\circ}{2} \right)} \)
\( \sqrt{2} = \frac{\sin \left( 30^\circ + \frac{\delta_{\text{min}}}{2} \right)}{\sin(30^\circ)} \)
3. Solve for \( \delta_{\text{min}} \):
We know \( \sin(30^\circ) = \frac{1}{2} \), so:
\( \sqrt{2} = \frac{\sin \left( 30^\circ + \frac{\delta_{\text{min}}}{2} \right)}{\frac{1}{2}} \)
\( \sin \left( 30^\circ + \frac{\delta_{\text{min}}}{2} \right) = \frac{\sqrt{2}}{2} \)
\( 30^\circ + \frac{\delta_{\text{min}}}{2} = \sin^{-1} \left( \frac{\sqrt{2}}{2} \right) = 45^\circ \)
\( \frac{\delta_{\text{min}}}{2} = 45^\circ - 30^\circ = 15^\circ \)
\( \delta_{\text{min}} = 2 \times 15^\circ = 30^\circ \)
Final Answer
Thus, the angle of minimum deviation \( \delta_{\text{min}} \) is \( 30^\circ \).



In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 