We are given the refractive index of a liquid and the angle of an equilateral prism. We need to find the angle of minimum deviation.
Solution
1. Formula for Refractive Index at Minimum Deviation:
The refractive index \( \mu \) of the prism material is given by:
\( \mu = \frac{\sin \left( \frac{A + \delta_{\text{min}}}{2} \right)}{\sin \left( \frac{A}{2} \right)} \)
where:
2. Substitute Given Values:
Given \( \mu = \sqrt{2} \) and \( A = 60^\circ \), we have:
\( \sqrt{2} = \frac{\sin \left( \frac{60^\circ + \delta_{\text{min}}}{2} \right)}{\sin \left( \frac{60^\circ}{2} \right)} \)
\( \sqrt{2} = \frac{\sin \left( 30^\circ + \frac{\delta_{\text{min}}}{2} \right)}{\sin(30^\circ)} \)
3. Solve for \( \delta_{\text{min}} \):
We know \( \sin(30^\circ) = \frac{1}{2} \), so:
\( \sqrt{2} = \frac{\sin \left( 30^\circ + \frac{\delta_{\text{min}}}{2} \right)}{\frac{1}{2}} \)
\( \sin \left( 30^\circ + \frac{\delta_{\text{min}}}{2} \right) = \frac{\sqrt{2}}{2} \)
\( 30^\circ + \frac{\delta_{\text{min}}}{2} = \sin^{-1} \left( \frac{\sqrt{2}}{2} \right) = 45^\circ \)
\( \frac{\delta_{\text{min}}}{2} = 45^\circ - 30^\circ = 15^\circ \)
\( \delta_{\text{min}} = 2 \times 15^\circ = 30^\circ \)
Final Answer
Thus, the angle of minimum deviation \( \delta_{\text{min}} \) is \( 30^\circ \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: