We are given the refractive index of a liquid and the angle of an equilateral prism. We need to find the angle of minimum deviation.
Solution
1. Formula for Refractive Index at Minimum Deviation:
The refractive index \( \mu \) of the prism material is given by:
\( \mu = \frac{\sin \left( \frac{A + \delta_{\text{min}}}{2} \right)}{\sin \left( \frac{A}{2} \right)} \)
where:
2. Substitute Given Values:
Given \( \mu = \sqrt{2} \) and \( A = 60^\circ \), we have:
\( \sqrt{2} = \frac{\sin \left( \frac{60^\circ + \delta_{\text{min}}}{2} \right)}{\sin \left( \frac{60^\circ}{2} \right)} \)
\( \sqrt{2} = \frac{\sin \left( 30^\circ + \frac{\delta_{\text{min}}}{2} \right)}{\sin(30^\circ)} \)
3. Solve for \( \delta_{\text{min}} \):
We know \( \sin(30^\circ) = \frac{1}{2} \), so:
\( \sqrt{2} = \frac{\sin \left( 30^\circ + \frac{\delta_{\text{min}}}{2} \right)}{\frac{1}{2}} \)
\( \sin \left( 30^\circ + \frac{\delta_{\text{min}}}{2} \right) = \frac{\sqrt{2}}{2} \)
\( 30^\circ + \frac{\delta_{\text{min}}}{2} = \sin^{-1} \left( \frac{\sqrt{2}}{2} \right) = 45^\circ \)
\( \frac{\delta_{\text{min}}}{2} = 45^\circ - 30^\circ = 15^\circ \)
\( \delta_{\text{min}} = 2 \times 15^\circ = 30^\circ \)
Final Answer
Thus, the angle of minimum deviation \( \delta_{\text{min}} \) is \( 30^\circ \).
Let A = \(\begin{bmatrix} \log_5 128 & \log_4 5 \log_5 8 & \log_4 25 \end{bmatrix}\) \). If \(A_{ij}\) is the cofactor of \( a_{ij} \), \( C_{ij} = \sum_{k=1}^2 a_{ik} A_{jk} \), and \( C = [C_{ij}] \), then \( 8|C| \) is equal to:
A molecule with the formula $ \text{A} \text{X}_2 \text{Y}_2 $ has all it's elements from p-block. Element A is rarest, monotomic, non-radioactive from its group and has the lowest ionization energy value among X and Y. Elements X and Y have first and second highest electronegativity values respectively among all the known elements. The shape of the molecule is:
A transition metal (M) among Mn, Cr, Co, and Fe has the highest standard electrode potential $ M^{n}/M^{n+1} $. It forms a metal complex of the type $[M \text{CN}]^{n+}$. The number of electrons present in the $ e $-orbital of the complex is ... ...
Consider the following electrochemical cell at standard condition. $$ \text{Au(s) | QH}_2\text{ | QH}_X(0.01 M) \, \text{| Ag(1M) | Ag(s) } \, E_{\text{cell}} = +0.4V $$ The couple QH/Q represents quinhydrone electrode, the half cell reaction is given below: $$ \text{QH}_2 \rightarrow \text{Q} + 2e^- + 2H^+ \, E^\circ_{\text{QH}/\text{Q}} = +0.7V $$
0.1 mol of the following given antiviral compound (P) will weigh .........x $ 10^{-1} $ g.