We are given the refractive index of a liquid and the angle of an equilateral prism. We need to find the angle of minimum deviation.
Solution
1. Formula for Refractive Index at Minimum Deviation:
The refractive index \( \mu \) of the prism material is given by:
\( \mu = \frac{\sin \left( \frac{A + \delta_{\text{min}}}{2} \right)}{\sin \left( \frac{A}{2} \right)} \)
where:
2. Substitute Given Values:
Given \( \mu = \sqrt{2} \) and \( A = 60^\circ \), we have:
\( \sqrt{2} = \frac{\sin \left( \frac{60^\circ + \delta_{\text{min}}}{2} \right)}{\sin \left( \frac{60^\circ}{2} \right)} \)
\( \sqrt{2} = \frac{\sin \left( 30^\circ + \frac{\delta_{\text{min}}}{2} \right)}{\sin(30^\circ)} \)
3. Solve for \( \delta_{\text{min}} \):
We know \( \sin(30^\circ) = \frac{1}{2} \), so:
\( \sqrt{2} = \frac{\sin \left( 30^\circ + \frac{\delta_{\text{min}}}{2} \right)}{\frac{1}{2}} \)
\( \sin \left( 30^\circ + \frac{\delta_{\text{min}}}{2} \right) = \frac{\sqrt{2}}{2} \)
\( 30^\circ + \frac{\delta_{\text{min}}}{2} = \sin^{-1} \left( \frac{\sqrt{2}}{2} \right) = 45^\circ \)
\( \frac{\delta_{\text{min}}}{2} = 45^\circ - 30^\circ = 15^\circ \)
\( \delta_{\text{min}} = 2 \times 15^\circ = 30^\circ \)
Final Answer
Thus, the angle of minimum deviation \( \delta_{\text{min}} \) is \( 30^\circ \).
Electrolysis of 600 mL aqueous solution of NaCl for 5 min changes the pH of the solution to 12. The current in Amperes used for the given electrolysis is ….. (Nearest integer).
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}