To determine the angle of minimum deviation \( \delta_m \) for a prism, we begin with the fundamental equation relating the refractive index \( n \), the apex angle \( A \), and the angle of minimum deviation.
The relation for a prism is given by:
\(n = \frac{\sin\left(\frac{A + \delta_m}{2}\right)}{\sin\left(\frac{A}{2}\right)}\)
We are given that the refractive index of the prism is \( n = \cot \frac{A}{2} \). Using trigonometric identities, we can rewrite \( \cot \frac{A}{2} \) as:
\(\cot \frac{A}{2} = \frac{\cos \frac{A}{2}}{\sin \frac{A}{2}}\)
Setting these expressions equal, we have:
\(\frac{\sin\left(\frac{A + \delta_m}{2}\right)}{\sin\left(\frac{A}{2}\right)} = \frac{\cos \frac{A}{2}}{\sin \frac{A}{2}}\)
This simplifies to:
\(\sin\left(\frac{A + \delta_m}{2}\right) = \cos \frac{A}{2}\)
Using the trigonometric identity \( \sin(\theta) = \cos(90^\circ - \theta) \), we can equate:
\(\frac{A + \delta_m}{2} = 90^\circ - \frac{A}{2}\)
Solving the equation for \( \delta_m \):
\(\frac{A + \delta_m}{2} + \frac{A}{2} = 90^\circ\)
\(\frac{A + \delta_m + A}{2} = 90^\circ\)
\(A + \delta_m = 180^\circ - A\)
\(\delta_m = 180^\circ - 2A\)
Hence, the angle of minimum deviation is:
The correct answer is: \(\delta_m = 180^\circ - 2A\)
Given:
\[ \mu = \frac{\sin \left( \frac{A + \delta_m}{2} \right)}{\sin \frac{A}{2}} \]
Using the relation:
\[ \cos \frac{A}{2} = \sin \left( \frac{A + \delta_m}{2} \right) \]
We get:
\[ \delta_m = \pi - 2A \]
Therefore:
\[ \delta_m = 180^\circ - 2A \]
A slanted object AB is placed on one side of convex lens as shown in the diagram. The image is formed on the opposite side. Angle made by the image with principal axis is: 

Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.