Given:
\[ \mu = \frac{\sin \left( \frac{A + \delta_m}{2} \right)}{\sin \frac{A}{2}} \]
Using the relation:
\[ \cos \frac{A}{2} = \sin \left( \frac{A + \delta_m}{2} \right) \]
We get:
\[ \delta_m = \pi - 2A \]
Therefore:
\[ \delta_m = 180^\circ - 2A \]
Statement-1: \( \text{ClF}_3 \) has 3 possible structures.
Statement-2: \( \text{III} \) is the most stable structure due to least lone pair-bond pair (lp-bp) repulsion.
Which of the following options is correct?
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: