Given:
\[ \mu = \frac{\sin \left( \frac{A + \delta_m}{2} \right)}{\sin \frac{A}{2}} \]
Using the relation:
\[ \cos \frac{A}{2} = \sin \left( \frac{A + \delta_m}{2} \right) \]
We get:
\[ \delta_m = \pi - 2A \]
Therefore:
\[ \delta_m = 180^\circ - 2A \]
Match List-I with List-II for the index of refraction for yellow light of sodium (589 nm)
LIST-I (Materials) | LIST-II (Refractive Indices) | ||
---|---|---|---|
A. | Ice | I. | 1.309 |
B. | Rock salt (NaCl) | II. | 1.460 |
C. | CCl₄ | III. | 1.544 |
D. | Diamond | IV. | 2.417 |
Choose the correct answer from the options given below:
Match the LIST-I with LIST-II
LIST-I | LIST-II | ||
---|---|---|---|
A. | Compton Effect | IV. | Scattering |
B. | Colors in thin film | II. | Interference |
C. | Double Refraction | III. | Polarization |
D. | Bragg's Equation | I. | Diffraction |
Choose the correct answer from the options given below:
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: