Using Bernoulli’s theorem for the flow of an ideal fluid:
\(P_1 + \frac{1}{2} \rho v^2 = P_2\)
Given:
- \(P_1 = 4.5 \times 10^4 \, \text{N/m}^2\),
- \(P_2 = 2.0 \times 10^4 \, \text{N/m}^2\),
- \(\rho = 1000 \, \text{kg/m}^3\).
Substituting values:
\(4.5 \times 10^4 + \frac{1}{2} \cdot 1000 \cdot v^2 = 2.0 \times 10^4\)
Rearranging:
\(\frac{1}{2} \cdot 1000 \cdot v^2 = 4.5 \times 10^4 - 2.0 \times 10^4\)
\(500v^2 = 2.5 \times 10^4\)
\(v^2 = 50 \implies v = \sqrt{50} \, \text{m/s}.\)
Therefore: \(v = 50 \, \text{m/s}.\)
The Correct answer is: 50 m/s
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: