Using Bernoulli’s theorem for the flow of an ideal fluid:
\(P_1 + \frac{1}{2} \rho v^2 = P_2\)
Given:
- \(P_1 = 4.5 \times 10^4 \, \text{N/m}^2\),
- \(P_2 = 2.0 \times 10^4 \, \text{N/m}^2\),
- \(\rho = 1000 \, \text{kg/m}^3\).
Substituting values:
\(4.5 \times 10^4 + \frac{1}{2} \cdot 1000 \cdot v^2 = 2.0 \times 10^4\)
Rearranging:
\(\frac{1}{2} \cdot 1000 \cdot v^2 = 4.5 \times 10^4 - 2.0 \times 10^4\)
\(500v^2 = 2.5 \times 10^4\)
\(v^2 = 50 \implies v = \sqrt{50} \, \text{m/s}.\)
Therefore: \(v = 50 \, \text{m/s}.\)
The Correct answer is: 50 m/s