For refining processes:
• Mond process is specific to nickel and involves the formation of a volatile carbonyl compound.
• Identify the reactions forming volatile compounds for easy separation and purification.
\(2\text{K[Au(CN)}_2] + \text{Zn} \xrightarrow{\Delta} \text{K}_2[\text{Zn(CN)}_4] + 2\text{Au}\)
\(\text{Ni} + 4\text{CO} \xrightarrow{\Delta} \text{Ni(CO)}_4\)
\(\text{Zr} + 2\text{I}_2 \xrightarrow{\Delta} \text{ZrI}_4\)
\(\text{ZnO} + \text{C} \xrightarrow{\Delta} \text{Zn} + \text{CO}\)
- The Mond process is used for refining nickel. In this process, impure nickel reacts with carbon monoxide at moderate temperatures to form volatile nickel tetracarbonyl \(\text{Ni(CO)}_4\).
The reaction is:
\[\text{Ni} + 4\text{CO} \xrightarrow{\Delta} \text{Ni(CO)}_4.\]
- The volatile \(\text{Ni(CO)}_4\) is then decomposed at high temperatures to obtain pure nickel.
Final Answer: (1) \(\text{Ni} + 4\text{CO} \xrightarrow{\Delta} \text{Ni(CO)}_4\).
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32