For refining processes:
• Mond process is specific to nickel and involves the formation of a volatile carbonyl compound.
• Identify the reactions forming volatile compounds for easy separation and purification.
\(2\text{K[Au(CN)}_2] + \text{Zn} \xrightarrow{\Delta} \text{K}_2[\text{Zn(CN)}_4] + 2\text{Au}\)
\(\text{Ni} + 4\text{CO} \xrightarrow{\Delta} \text{Ni(CO)}_4\)
\(\text{Zr} + 2\text{I}_2 \xrightarrow{\Delta} \text{ZrI}_4\)
\(\text{ZnO} + \text{C} \xrightarrow{\Delta} \text{Zn} + \text{CO}\)
- The Mond process is used for refining nickel. In this process, impure nickel reacts with carbon monoxide at moderate temperatures to form volatile nickel tetracarbonyl \(\text{Ni(CO)}_4\).
The reaction is:
\[\text{Ni} + 4\text{CO} \xrightarrow{\Delta} \text{Ni(CO)}_4.\]
- The volatile \(\text{Ni(CO)}_4\) is then decomposed at high temperatures to obtain pure nickel.
Final Answer: (1) \(\text{Ni} + 4\text{CO} \xrightarrow{\Delta} \text{Ni(CO)}_4\).
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}
The equilibrium constant for decomposition of $ H_2O $ (g) $ H_2O(g) \rightleftharpoons H_2(g) + \frac{1}{2} O_2(g) \quad (\Delta G^\circ = 92.34 \, \text{kJ mol}^{-1}) $ is $ 8.0 \times 10^{-3} $ at 2300 K and total pressure at equilibrium is 1 bar. Under this condition, the degree of dissociation ($ \alpha $) of water is _____ $\times 10^{-2}$ (nearest integer value). [Assume $ \alpha $ is negligible with respect to 1]