We are given the ratio of the vapour densities as: \[ \frac{\rho_1}{\rho_2} = \frac{4}{25} \]
Step 2: Relate Vapour Density Ratio to r.m.s. Velocity RatioWe know that the ratio of r.m.s. velocities \( v_1 \) and \( v_2 \) is related to the ratio of vapour densities by the formula: \[ \frac{v_1}{v_2} = \sqrt{\frac{\rho_2}{\rho_1}} \]
Step 3: Calculate the Ratio of r.m.s. VelocitiesSubstituting the given vapour density ratio: \[ \frac{v_1}{v_2} = \sqrt{\frac{25}{4}} = \frac{5}{2} \]
Final Answer: \[ \frac{v_1}{v_2} = \frac{5}{2} \]Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: