We are given the ratio of the vapour densities as: \[ \frac{\rho_1}{\rho_2} = \frac{4}{25} \]
Step 2: Relate Vapour Density Ratio to r.m.s. Velocity RatioWe know that the ratio of r.m.s. velocities \( v_1 \) and \( v_2 \) is related to the ratio of vapour densities by the formula: \[ \frac{v_1}{v_2} = \sqrt{\frac{\rho_2}{\rho_1}} \]
Step 3: Calculate the Ratio of r.m.s. VelocitiesSubstituting the given vapour density ratio: \[ \frac{v_1}{v_2} = \sqrt{\frac{25}{4}} = \frac{5}{2} \]
Final Answer: \[ \frac{v_1}{v_2} = \frac{5}{2} \]

For the circuit shown above, the equivalent gate is:
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: