The ratio of the radii of two solid spheres of same mass in 2:3. The ratio of the moments of inertia of the spheres about their diameters is:
4:9
2:3
8:27
17:21
To solve the problem, we need to determine the ratio of the moments of inertia of two solid spheres having the same mass but different radii in the ratio 2:3.
1. Moment of Inertia of a Solid Sphere:
The moment of inertia $I$ of a solid sphere about its diameter is given by the formula:
$ I = \frac{2}{5} M R^2 $
where:
$M$ is the mass of the sphere,
$R$ is the radius of the sphere.
2. Given Condition:
- Let the radii of the two spheres be $R_1$ and $R_2$, such that:
$ R_1 : R_2 = 2 : 3 $
- The masses of both spheres are the same.
3. Applying the Moment of Inertia Formula:
Since mass is constant, the ratio of their moments of inertia is directly proportional to the square of their radii:
$ \frac{I_1}{I_2} = \frac{R_1^2}{R_2^2} = \left( \frac{2}{3} \right)^2 = \frac{4}{9} $
Final Answer:
The ratio of the moments of inertia of the spheres about their diameters is 4 : 9.
The correct option is: (A): 4:9.
The moment of inertia of a solid sphere about its diameter (I) is proportional to its mass (m) and the square of its radius (r):
I ∝ m * r²
Given that the masses of both spheres are the same, we can set up a relationship between the radii of the spheres using the given ratio:
r₁ : r₂ = 2 : 3
Let's assume the common mass is 'm', and the radii of the spheres are 2r and 3r, respectively.
The moments of inertia of the two spheres are then:
I₁ = m * (2r)² = 4 * m * r² I₂ = m * (3r)² = 9 * m * r²
The ratio of the moments of inertia (I₁ : I₂) is:
I₁ : I₂ = 4 * m * r² : 9 * m * r² = 4 : 9
So, the ratio of the moments of inertia of the spheres about their diameters is indeed 4:9.
A circular ring and a solid sphere having same radius roll down on an inclined plane from rest without slipping. The ratio of their velocities when reached at the bottom of the plane is $\sqrt{\frac{\mathrm{x}}{5}}$ where $\mathrm{x}=$ _______.
If $\overrightarrow{\mathrm{L}}$ and $\overrightarrow{\mathrm{P}}$ represent the angular momentum and linear momentum respectively of a particle of mass ' $m$ ' having position vector $\overrightarrow{\mathrm{r}}=\mathrm{a}(\hat{\mathrm{i}} \cos \omega \mathrm{t}+\hat{\mathrm{j}} \sin \omega \mathrm{t})$. The direction of force is
Which of the following are correct expression for torque acting on a body?
A. $\ddot{\tau}=\ddot{\mathrm{r}} \times \ddot{\mathrm{L}}$
B. $\ddot{\tau}=\frac{\mathrm{d}}{\mathrm{dt}}(\ddot{\mathrm{r}} \times \ddot{\mathrm{p}})$
C. $\ddot{\tau}=\ddot{\mathrm{r}} \times \frac{\mathrm{d} \dot{\mathrm{p}}}{\mathrm{dt}}$
D. $\ddot{\tau}=\mathrm{I} \dot{\alpha}$
E. $\ddot{\tau}=\ddot{\mathrm{r}} \times \ddot{\mathrm{F}}$
( $\ddot{r}=$ position vector; $\dot{\mathrm{p}}=$ linear momentum; $\ddot{\mathrm{L}}=$ angular momentum; $\ddot{\alpha}=$ angular acceleration; $\mathrm{I}=$ moment of inertia; $\ddot{\mathrm{F}}=$ force; $\mathrm{t}=$ time $)$
Choose the correct answer from the options given below:
Rotational motion can be defined as the motion of an object around a circular path, in a fixed orbit.
The wheel or rotor of a motor, which appears in rotation motion problems, is a common example of the rotational motion of a rigid body.
Other examples: