Step 1: Using the formula for intensity in a Young's double slit experiment.
The intensity at any point in Young's double slit experiment is given by: \[ I_{\text{res}} = 4I_0 \cos^2 \left( \frac{\theta}{2} \right) \] Where \( I_0 \) is the maximum intensity, and \( \theta \) is the phase difference. For the first point \( P \), where \( \theta = \frac{\pi}{3} \): \[ I_1 = 4I_0 \cos^2 \left( \frac{\pi}{6} \right) = 4I_0 \left( \frac{\sqrt{3}}{2} \right)^2 = 4I_0 \times \frac{3}{4} = 3I_0 \] For the second point \( Q \), where \( \theta = \frac{\pi}{2} \): \[ I_2 = 4I_0 \cos^2 \left( \frac{\pi}{4} \right) = 4I_0 \left( \frac{1}{\sqrt{2}} \right)^2 = 4I_0 \times \frac{1}{2} = 2I_0 \] Thus, the ratio of intensities is: \[ \frac{I_1}{I_2} = \frac{3I_0}{2I_0} = \frac{3}{2} \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: