Step 1: Using the formula for intensity in a Young's double slit experiment.
The intensity at any point in Young's double slit experiment is given by: \[ I_{\text{res}} = 4I_0 \cos^2 \left( \frac{\theta}{2} \right) \] Where \( I_0 \) is the maximum intensity, and \( \theta \) is the phase difference. For the first point \( P \), where \( \theta = \frac{\pi}{3} \): \[ I_1 = 4I_0 \cos^2 \left( \frac{\pi}{6} \right) = 4I_0 \left( \frac{\sqrt{3}}{2} \right)^2 = 4I_0 \times \frac{3}{4} = 3I_0 \] For the second point \( Q \), where \( \theta = \frac{\pi}{2} \): \[ I_2 = 4I_0 \cos^2 \left( \frac{\pi}{4} \right) = 4I_0 \left( \frac{1}{\sqrt{2}} \right)^2 = 4I_0 \times \frac{1}{2} = 2I_0 \] Thus, the ratio of intensities is: \[ \frac{I_1}{I_2} = \frac{3I_0}{2I_0} = \frac{3}{2} \]
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.