The age can be calculated using:
t = \(\left(\ln \frac{(^{14}C/^{12}C)_{\text{initial}}}{(^{14}C/^{12}C)_{\text{sample}}}\right) \frac{t_{1/2}}{\ln 2}\)
Given \(\frac{(^{14}C/^{12}C)_{\text{sample}}}{(^{14}C/^{12}C)_{\text{initial}}} = \frac{1}{8}\),
t = \(\ln 8 \times \frac{5730}{\ln 2} = 17190\) years
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
The maximum speed of a boat in still water is 27 km/h. Now this boat is moving downstream in a river flowing at 9 km/h. A man in the boat throws a ball vertically upwards with speed of 10 m/s. Range of the ball as observed by an observer at rest on the river bank is _________ cm. (Take \( g = 10 \, {m/s}^2 \)).