The age can be calculated using:
t = \(\left(\ln \frac{(^{14}C/^{12}C)_{\text{initial}}}{(^{14}C/^{12}C)_{\text{sample}}}\right) \frac{t_{1/2}}{\ln 2}\)
Given \(\frac{(^{14}C/^{12}C)_{\text{sample}}}{(^{14}C/^{12}C)_{\text{initial}}} = \frac{1}{8}\),
t = \(\ln 8 \times \frac{5730}{\ln 2} = 17190\) years