The half-life of bromine-82, \( t_{1/2} = 36 \, \text{hours} \).
\(t_{1/2} = \frac{0.693}{K}\)
\(K = \frac{0.693}{36} = 0.01925 \, \text{hr}^{-1}\)
For a 1\(^\text{st}\)-order reaction, the kinetic equation is:
\(t = \frac{2.303}{K} \log \frac{a}{a-x}\)
For \( t = 1 \, \text{day} \, (t = 24 \, \text{hr}) \):
\(\log \frac{a}{a-x} = \frac{t \times K}{2.303}\)
\(\log \frac{a}{a-x} = \frac{24 \, \text{hr} \times 0.01925 \, \text{hr}^{-1}}{2.303}\)
\(\log \frac{a}{a-x} = 0.2006\)
Now,
\(\frac{a}{a-x} = \text{antilog} \, (0.2006)\)
\(\frac{a}{a-x} = 1.587\)
If \( a = 1 \):
\(\frac{1}{1-x} = 1.587 \implies 1-x = 0.6301\)
Thus, the fraction remaining after one day is:
\(1-x = 0.6301 \approx 63\%\)
The Correct Answer is: 63%
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32