Given that the rate of a first-order reaction is decreasing over time, we can use the integrated rate law for first-order kinetics:
Rate = \( k[A]_0 e^{-kt} \)
At time \( t = 10 \) min:
0.04 = \( k[A]_0 e^{-k \times 600} \)
At time \( t = 20 \) min:
0.03 = \( k[A]_0 e^{-k \times 1200} \)
Dividing equation (2) by equation (1):
\( \frac{0.03}{0.04} = e^{-k \times (1200 - 600)} \)
\( \frac{4}{3} = e^{-600k} \)
Taking natural log:
\( \ln \left( \frac{4}{3} \right) = 600k \)
Now solve for \( t_{\frac{1}{2}} \) using:
\( t_{\frac{1}{2}} = \frac{\ln 2}{k} \)
\( t_{\frac{1}{2}} = \frac{600 \ln 2}{\ln \left( \frac{4}{3} \right)} \) sec.
Now using the given values:
\( t_{\frac{1}{2}} = 600 \times \frac{\log 2}{\log 4 - \log 3} = 10 \times \frac{0.3010}{0.6020 - 0.4771} \) min
\( t_{\frac{1}{2}} = 24.08 \) min
\( t_{\frac{1}{2}} = 24 \)
Initial concentration of [𝐴] 𝑚𝑜𝑙 $𝐿 ^{−1}$ | Initial concentration of [𝐵] 𝑚𝑜𝑙$𝐿 ^{−1}$ | Initial rate of formation of [𝐶] 𝑚𝑜𝑙 $𝐿^{−1} 𝑠 ^{−1}$ |
0.2 | 0.2 | 0.3 |
0.4 | 0.2 | 0.6 |
0.4 | 0.4 | 2.4 |