Given that the rate of a first-order reaction is decreasing over time, we can use the integrated rate law for first-order kinetics:
Rate = \( k[A]_0 e^{-kt} \)
At time \( t = 10 \) min:
0.04 = \( k[A]_0 e^{-k \times 600} \)
At time \( t = 20 \) min:
0.03 = \( k[A]_0 e^{-k \times 1200} \)
Dividing equation (2) by equation (1):
\( \frac{0.03}{0.04} = e^{-k \times (1200 - 600)} \)
\( \frac{4}{3} = e^{-600k} \)
Taking natural log:
\( \ln \left( \frac{4}{3} \right) = 600k \)
Now solve for \( t_{\frac{1}{2}} \) using:
\( t_{\frac{1}{2}} = \frac{\ln 2}{k} \)
\( t_{\frac{1}{2}} = \frac{600 \ln 2}{\ln \left( \frac{4}{3} \right)} \) sec.
Now using the given values:
\( t_{\frac{1}{2}} = 600 \times \frac{\log 2}{\log 4 - \log 3} = 10 \times \frac{0.3010}{0.6020 - 0.4771} \) min
\( t_{\frac{1}{2}} = 24.08 \) min
\( t_{\frac{1}{2}} = 24 \)
The motion of an airplane is represented by the velocity-time graph as shown below. The distance covered by the airplane in the first 30.5 seconds is km.
The least acidic compound, among the following is
Choose the correct set of reagents for the following conversion: