To calculate the activation energy \(E_a\) of the reaction, we use the Arrhenius equation in its logarithmic form: \(\ln\left(\frac{k_2}{k_1}\right)=-\frac{E_a}{R}\left(\frac{1}{T_2}-\frac{1}{T_1}\right)\).
Given that the rate constant \(k\) doubles from \(k_1\) to \(k_2\) as temperature increases from \(T_1=300\,K\) to \(T_2=310\,K\), we have \(\frac{k_2}{k_1}=2\).
Substitute the known values into the equation: \(\ln(2)=-\frac{E_a}{8.314}\left(\frac{1}{310}-\frac{1}{300}\right)\).
Calculate the temperature difference: \(\frac{1}{310}-\frac{1}{300}=\frac{300-310}{310\times300}=-\frac{10}{93,000}\approx-0.0001075\).
So, \(\ln(2)\approx0.693\) can be substituted into the equation:\[0.693=-\frac{E_a}{8.314}\times-0.0001075\].
Solving for \(E_a\):\[E_a=\frac{0.693\times8.314}{0.0001075}\approx53,000\ J/mol=53\ kJ/mol\].
Thus, the activation energy \(E_a\) of the reaction is \({53\ kJ/mol}\), which matches the correct answer.
Step 1: Use Arrhenius equation ratio form
\[ \frac{k_2}{k_1} = e^{\frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)} \] Given \( \frac{k_2}{k_1} = 2 \), \( T_1 = 300\,K \), \( T_2 = 310\,K \).
Step 2: Take natural logarithm
\[ \ln 2 = \frac{E_a}{R} \left(\frac{1}{300} - \frac{1}{310}\right) \]
Step 3: Calculate difference in reciprocals
\[ \frac{1}{300} - \frac{1}{310} = \frac{310 - 300}{300 \times 310} = \frac{10}{93000} \approx 1.075 \times 10^{-4} \]
Step 4: Calculate \( E_a \)
\[ \ln 2 \approx 0.693 \] \[ 0.693 = \frac{E_a}{8.314} \times 1.075 \times 10^{-4} \implies E_a = \frac{0.693}{1.075 \times 10^{-4}} \times 8.314 \approx 53642 \, J/mol = 53.6 \, kJ/mol \]
An ideal monatomic gas of $ n $ moles is taken through a cycle $ WXYZW $ consisting of consecutive adiabatic and isobaric quasi-static processes, as shown in the schematic $ V-T $ diagram. The volume of the gas at $ W, X $ and $ Y $ points are, $ 64 \, \text{cm}^3 $, $ 125 \, \text{cm}^3 $ and $ 250 \, \text{cm}^3 $, respectively. If the absolute temperature of the gas $ T_W $ at the point $ W $ is such that $ n R T_W = 1 \, J $ ($ R $ is the universal gas constant), then the amount of heat absorbed (in J) by the gas along the path $ XY $ is