>
Exams
>
Engineering Mathematics
>
Linear Algebra
>
the rank of the matrix a begin bmatrix 1 2 3 1 4 2
Question:
The rank of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$ is
Show Hint
The rank of a matrix is the number of linearly independent rows (or columns) in the matrix.
AP PGECET - 2024
AP PGECET
Updated On:
May 6, 2025
\( 1 \)
\( 3 \)
\( 2 \)
\( 0 \)
Hide Solution
Verified By Collegedunia
The Correct Option is
C
Solution and Explanation
To find the rank of the matrix $A$, we can perform row operations to bring it to row-echelon form. $$A = \begin{bmatrix} 1 & 2 & 3
1 & 4 & 2
2 & 6 & 5 \end{bmatrix}$$ $R_2 = R_2 - R_1$: $$\begin{bmatrix} 1 & 2 & 3
0 & 2 & -1
2 & 6 & 5 \end{bmatrix}$$ $R_3 = R_3 - 2R_1$: $$\begin{bmatrix} 1 & 2 & 3
0 & 2 & -1
0 & 2 & -1 \end{bmatrix}$$ $R_3 = R_3 - R_2$: $$\begin{bmatrix} 1 & 2 & 3
0 & 2 & -1
0 & 0 & 0 \end{bmatrix}$$ The row-echelon form of the matrix has 2 non-zero rows. Therefore, the rank of the matrix A is 2.
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Linear Algebra
Determine the rank of the matrix:
\[ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix} \]
TS PGECET - 2025
Engineering Mathematics
Linear Algebra
View Solution
Let \( A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \) be a 3 × 3 matrix. If \( \alpha \) and \( \beta \) are the largest and smallest eigenvalues of \( A \), respectively, then \( \alpha - \beta = \_\_\_\_\_\_ \)
AP PGECET - 2025
Mathematics
Linear Algebra
View Solution
If the determinant of the 3 × 3 matrix \( A = \begin{pmatrix} a & 1 & 2 \\ b & 0 & -2 \\ 1 & -3 & 1 \end{pmatrix} \) is zero, then the values of \( a \) and \( b \) are:
AP PGECET - 2025
Mathematics
Linear Algebra
View Solution
Find the inverse of the matrix:
\[ \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix} \]
TS PGECET - 2025
Engineering Mathematics
Linear Algebra
View Solution
Find the eigenvalues of the matrix: \[ A = \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix} \]
TS PGECET - 2025
Engineering Mathematics
Linear Algebra
View Solution
View More Questions
Questions Asked in AP PGECET exam
Let \( z \) be a complex variable and \( C : |z| = 3 \) be a circle in the complex plane. Then,
\[ \oint_C \frac{z^2}{(z - 1)^2(z + 2)} \, dz = \]
AP PGECET - 2025
Complex numbers
View Solution
If \( \vec{F}(x, y, z) = 3x^2y\,\hat{i} + 5y^2z\,\hat{j} - 8xyz\,\hat{k} \) is a continuously differentiable vector field, then the curl of \( \vec{F} \) at (1,1,1) is ...............
AP PGECET - 2025
Calculus
View Solution
Let \( f(x) = x^3 - \dfrac{9}{2}x^2 + 6x - 2 \) be a function defined on the closed interval \([0, 3]\). Then, the global maximum value of \( f(x) \) is ...............
AP PGECET - 2025
Calculus
View Solution
For a stable closed loop system, the gain at phase crossover frequency should always be:
AP PGECET - 2025
Control Systems
View Solution
If the matrix
\[ A = \begin{pmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{pmatrix} \] has three distinct eigenvalues, and one of its eigenvectors is \[ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \] then which of the following can be another eigenvector of \( A \)?
AP PGECET - 2025
Linear Algebra
View Solution
View More Questions