To find the rank of the matrix $A$, we can perform row operations to bring it to row-echelon form.
$$A = \begin{bmatrix} 1 & 2 & 3
1 & 4 & 2
2 & 6 & 5 \end{bmatrix}$$
$R_2 = R_2 - R_1$:
$$\begin{bmatrix} 1 & 2 & 3
0 & 2 & -1
2 & 6 & 5 \end{bmatrix}$$
$R_3 = R_3 - 2R_1$:
$$\begin{bmatrix} 1 & 2 & 3
0 & 2 & -1
0 & 2 & -1 \end{bmatrix}$$
$R_3 = R_3 - R_2$:
$$\begin{bmatrix} 1 & 2 & 3
0 & 2 & -1
0 & 0 & 0 \end{bmatrix}$$
The row-echelon form of the matrix has 2 non-zero rows. Therefore, the rank of the matrix A is 2.