We are asked to find the global maximum of the function:
\[
f(x) = x^3 - \frac{9}{2}x^2 + 6x - 2 \text{on the interval } [0, 3]
\]
To find the global maximum on a closed interval, evaluate the function at:
- Endpoints: $x = 0$ and $x = 3$
- Critical points inside the interval (where $f'(x) = 0$)
Step 1: Compute the derivative of $f(x)$:
\[
f'(x) = 3x^2 - 9x + 6
\]
Step 2: Set $f'(x) = 0$ and solve:
\[
3x^2 - 9x + 6 = 0 \Rightarrow x^2 - 3x + 2 = 0 \Rightarrow (x - 1)(x - 2) = 0
\Rightarrow x = 1, 2
\]
These are critical points in the interval $[0, 3]$. Now evaluate $f(x)$ at $x = 0$, $1$, $2$, and $3$.
Step 3: Evaluate function values:
\[
f(0) = 0 - 0 + 0 - 2 = -2\]
\[f(1) = 1 - \frac{9}{2} + 6 - 2 = 1 - 4.5 + 6 - 2 = 0.5\]
\[f(2) = 8 - \frac{9}{2}(4) + 12 - 2 = 8 - 18 + 12 - 2 = 0\]
\[f(3) = 27 - \frac{9}{2}(9) + 18 - 2 = 27 - 40.5 + 18 - 2 = 2.5\]
Step 4: Compare all values:
\[
f(0) = -2, f(1) = 0.5, f(2) = 0, f(3) = 2.5
\]
The global maximum value of $f(x)$ on $[0, 3]$ is $\boxed{2.5}$, which occurs at $x = 3$.