To solve this, we first find the determinant of the given matrix \( A \).
The determinant of a 3x3 matrix is calculated as:
\[
{det}(A) = a \begin{vmatrix} 0 & -2 \\ -3 & 1 \end{vmatrix} - 1 \begin{vmatrix} b & -2 \\ 1 & 1 \end{vmatrix} + 2 \begin{vmatrix} b & 0 \\ 1 & -3 \end{vmatrix}
\]
Now calculate the minors:
\[
\begin{vmatrix} 0 & -2 \\ -3 & 1 \end{vmatrix} = (0)(1) - (-2)(-3) = -6
\]
\[
\begin{vmatrix} b & -2 \\ 1 & 1 \end{vmatrix} = (b)(1) - (-2)(1) = b + 2
\]
\[
\begin{vmatrix} b & 0 \\ 1 & -3 \end{vmatrix} = (b)(-3) - (0)(1) = -3b
\]
Substitute these values into the determinant formula:
\[
{det}(A) = a(-6) - 1(b + 2) + 2(-3b) = -6a - b - 2 - 6b = -6a - 7b - 2
\]
Set the determinant equal to zero to find the values of a and b:
\[
-6a - 7b - 2 = 0 ⇒ 6a + 7b = -2
\]
Solving this equation gives \( a = -\frac{1}{6} \) and \( b = -\frac{1}{7} \).