According to Bohr’s theory, the radius of an electron’s orbit is given by:
\[ r \propto \frac{n^2}{Z} \]
where \(n\) is the principal quantum number and \(Z\) is the atomic number. Since the electron is in hydrogen (\(Z = 1\)), we get:
\[ \frac{r_4}{r_3} = \frac{4^2}{3^2} = \frac{16}{9} \]
Thus, \(r_4 = \frac{16}{9}R\).
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: