To determine which option corresponds to the wavelength of a line in the Balmer series of the hydrogen atom, we use the Rydberg formula for the Balmer series:
\[
\frac{1}{\lambda} = R \left( \frac{1}{2^2} - \frac{1}{n^2} \right)
\]
where:
- \( \lambda \) is the wavelength,
- \( R \) is the Rydberg constant,
- \( n \) is an integer greater than 2 (since the Balmer series corresponds to transitions to the \( n=2 \) level).
Analysis of Each Option:
1. Option (1): \(\frac{9}{8R}\)
- Rearrange to find \( \lambda \):
\[
\lambda = \frac{9}{8R}
\]
- Using the Rydberg formula:
\[
\frac{1}{\lambda} = \frac{8R}{9} = R \left( \frac{1}{4} - \frac{1}{n^2} \right)
\]
\[
\frac{8}{9} = \frac{1}{4} - \frac{1}{n^2}
\]
\[
\frac{1}{n^2} = \frac{1}{4} - \frac{8}{9} = \frac{9 - 32}{36} = -\frac{23}{36}
\]
- This is not possible since \( \frac{1}{n^2} \) cannot be negative.
2. Option (2): \(\frac{100}{21R}\)
- Rearrange to find \( \lambda \):
\[
\lambda = \frac{100}{21R}
\]
- Using the Rydberg formula:
\[
\frac{1}{\lambda} = \frac{21R}{100} = R \left( \frac{1}{4} - \frac{1}{n^2} \right)
\]
\[
\frac{21}{100} = \frac{1}{4} - \frac{1}{n^2}
\]
\[
\frac{1}{n^2} = \frac{1}{4} - \frac{21}{100} = \frac{25 - 21}{100} = \frac{4}{100} = \frac{1}{25}
\]
\[
n^2 = 25 \implies n = 5
\]
- This is a valid transition (\( n=5 \) to \( n=2 \)).Option (2) is valid.
3. Option (3): \(\frac{25}{24R}\)
- Rearrange to find \( \lambda \):
\[
\lambda = \frac{25}{24R}
\]
- Using the Rydberg formula:
\[
\frac{1}{\lambda} = \frac{24R}{25} = R \left( \frac{1}{4} - \frac{1}{n^2} \right)
\]
\[
\frac{24}{25} = \frac{1}{4} - \frac{1}{n^2}
\]
\[
\frac{1}{n^2} = \frac{1}{4} - \frac{24}{25} = \frac{25 - 96}{100} = -\frac{71}{100}
\]
- This is not possible since \( \frac{1}{n^2} \) cannot be negative.
4. Option (4): \(\frac{16}{15R}\)
- Rearrange to find \( \lambda \):
\[
\lambda = \frac{16}{15R}
\]
- Using the Rydberg formula:
\[
\frac{1}{\lambda} = \frac{15R}{16} = R \left( \frac{1}{4} - \frac{1}{n^2} \right)
\]
\[
\frac{15}{16} = \frac{1}{4} - \frac{1}{n^2}
\]
\[
\frac{1}{n^2} = \frac{1}{4} - \frac{15}{16} = \frac{4 - 15}{16} = -\frac{11}{16}
\]
- This is not possible since \( \frac{1}{n^2} \) cannot be negative.
Final Answer:
The wavelength corresponding to a line in the Balmer series of the hydrogen atom is:
\[
\boxed{\frac{100}{21R}}
\]
This corresponds to option (2).