According to Bohr’s model, the radius of the nth orbit of a hydrogen-like atom is given by:
\( r_n = \frac{0.51n^2}{Z} \, \text{Å} \)
where \( n \) is the principal quantum number and \( Z \) is the atomic number.
For Li++, \( Z = 3 \) and \( n = 5 \). Substituting these values into the formula:
\( r_5 = \frac{0.51 \times 5^2}{3} \, \text{Å} = \frac{0.51 \times 25}{3} \, \text{Å} \)
Now, convert the value to meters:
\( r_5 = 0.51 \times \frac{25}{3} \times 10^{-10} \, \text{m} = 17 \times 25 \times 10^{-12} \, \text{m} = 425 \times 10^{-12} \, \text{m} \)
The radius of the fifth orbit of Li++ is 425 × 10−12 m.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: