Question:

The projection of vector $\hat{i}$ on the vector $\hat{i} + \hat{j} + 2\hat{k}$ is:

Show Hint

Projection = $\frac{ \vec{a} \cdot \vec{b} }{ |\vec{b}| }$ when you need only the scalar value.
  • $\frac{1}{\sqrt{6}}$
  • $\sqrt{6}$
  • $\frac{2}{\sqrt{6}}$
  • $\frac{3}{\sqrt{6}}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

The projection of $\vec{a}$ on $\vec{b}$ is: \[ \text{Proj}_{\vec{b}}\, \vec{a} = \frac{ \vec{a} \cdot \vec{b} }{ |\vec{b}| }. \] Here, \[ \vec{a} = \hat{i}, \vec{b} = \hat{i} + \hat{j} + 2\hat{k}. \] Dot product: \[ \vec{a} \cdot \vec{b} = (1)(1) + (0)(1) + (0)(2) = 1. |\vec{b}| = \sqrt{1^2 + 1^2 + 2^2} = \sqrt{6}. \] So, \[ \text{Projection} = \frac{1}{\sqrt{6}}. \]
Was this answer helpful?
0
0

Questions Asked in CBSE CLASS XII exam

View More Questions