Given:
We are to find the product of all four values of:
\[
\left( 1 + i\sqrt{3} \right)^{3/4}
\]
Step 1: Convert the complex number to polar form
Let \( z = 1 + i\sqrt{3} \)
Find modulus \( |z| \):
\[
|z| = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2
\]
Argument \( \theta = \arg(z) = \tan^{-1}\left( \frac{\sqrt{3}}{1} \right) = \frac{\pi}{3} \)
So, in polar form:
\[
z = 2 \text{cis} \frac{\pi}{3} = 2\left( \cos\frac{\pi}{3} + i\sin\frac{\pi}{3} \right)
\]
Step 2: Raise to the power \( \frac{3}{4} \)
\[
z^{3/4} = \left( 2 \text{cis} \frac{\pi}{3} \right)^{3/4}
= 2^{3/4} \text{cis} \left( \frac{3\pi}{4} + \frac{2\pi k}{4} \right), \quad k = 0, 1, 2, 3
\]
So the four values are:
\[
2^{3/4} \text{cis} \left( \frac{3\pi}{4} \right), \quad
2^{3/4} \text{cis} \left( \frac{5\pi}{4} \right), \quad
2^{3/4} \text{cis} \left( \frac{7\pi}{4} \right), \quad
2^{3/4} \text{cis} \left( \frac{9\pi}{4} \right)
\]
Step 3: Take the product of all values
Each value has modulus \( 2^{3/4} \), so the product of the four values is:
\[
\left( 2^{3/4} \right)^4 = 2^3 = 8
\]
The arguments are evenly spaced on the unit circle, so the imaginary parts cancel out in multiplication, and the argument sum doesn’t affect the modulus result.
Final Answer:
The product of the four values is 8.