Step 1: Write the given data
Step 2: Apply Boyle's Law
Boyle's law states that:
\[ P_{\text{initial}} \cdot V_{\text{initial}} = P_{\text{final}} \cdot V_{\text{final}}. \] Substitute the given values: \[ 940.3 \times 100 = P_{\text{final}} \times 60. \] Solving for \( P_{\text{final}} \): \[ P_{\text{final}} = \frac{940.3 \times 100}{60} = 1567.16 \, \text{mm Hg}. \]
Step 3: Round to the nearest integer \[ P_{\text{final}} = 1567 \, \text{mm Hg}. \]
Final Answer:
The pressure at which the volume decreases by 40% is \( P_{\text{final}} = 1567 \, \text{mm Hg}. \)
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
The gas laws were developed at the end of the 18th century, when scientists began to realize that relationships between pressure, volume and temperature of a sample of gas could be obtained which would hold to approximation for all gases.