1. Let the given function be:
\[F(x) = \int_{0}^{x^2} \frac{t^2 - 5t + 4}{2 + e^t} dt.\]
2. Differentiate \(F(x)\) with respect to x using the Leibniz rule:
\[F'(x) = \frac{d}{dx}\left(\int_{0}^{x^2} f(t) dt\right) = f(x^2) \cdot \frac{d}{dx}(x^2) = f(x^2) \cdot 2x.\]
Here,
\[f(t) = \frac{t^2 - 5t + 4}{2 + e^t}.\]
3. For the extremum, set \(F'(x) = 0\):
\[f(x^2) \cdot 2x = 0.\]
This gives two cases:
\(x = 0\) (which is not valid for extremum as it lies on the boundary), \(f(x^2) = 0.\)
4. Solve \(f(x^2) = 0\):
\[\frac{t^2 - 5t + 4}{2 + e^t} = 0 \Rightarrow t^2 - 5t + 4 = 0.\]
5. Factorize \(t^2 - 5t + 4 = 0\):
\[(t - 1)(t - 4) = 0 \Rightarrow t = 1, t = 4.\]
6. Since \(t = x^2\), we get:
\[x^2 = 1 \Rightarrow x = \pm 1\]
\[x^2 = 4 \Rightarrow x = \pm 2.\]
Thus, the points of extremum are \(\pm 1\) and \(\pm 2\).