Question:

The point of intersection of the lines \[ \vec{r} = 2\vec{b} + t(6\vec{c} - \vec{a}) \quad \text{and} \quad \vec{r} = \vec{a} + s(\vec{b} - 3\vec{c}) \text{ is:} \]

Show Hint

Equate vector equations and match coefficients to solve for parameters $t$ and $s$.
Updated On: May 18, 2025
  • $\dfrac{\vec{a} + \vec{b} + \vec{c}}{3}$
  • $\vec{b} - \vec{c} - 6\vec{a}$
  • $2\vec{a} - \vec{b} + \vec{c}$
  • $\vec{a} + 2\vec{b} - 6\vec{c}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Set the vector equations equal: \[ 2\vec{b} + t(6\vec{c} - \vec{a}) = \vec{a} + s(\vec{b} - 3\vec{c}) \] Solve this system to find the common point. Substituting appropriate $t$ and $s$ gives: \[ \vec{r} = \vec{a} + 2\vec{b} - 6\vec{c} \]
Was this answer helpful?
0
0

Top Questions on Vectors

View More Questions