The period of the cotangent function \( \cot(x) \) is \( \pi \). For a function of the form \( \cot(kx + \phi) \), the period is given by: \[ \text{Period} = \frac{\pi}{|k|} \] In this case, the argument of the cotangent is \( \frac{\pi}{3} x + \frac{\pi}{6} \), where \( k = \frac{\pi}{3} \). Thus, the period of \( g(x) = 5 \cot \left( \frac{\pi}{3} x + \frac{\pi}{6} \right) + 2 \) is: \[ \text{Period} = \frac{\pi}{\left| \frac{\pi}{3} \right|} = 3 \]
The correct option is (B) : \(3\)
The general form of the cotangent function is \(f(x) = A\cot(Bx + C) + D\), where:
The period of the standard cotangent function \(\cot(x)\) is \(\pi\).
For the given function \(g(x) = 5\cot\left(\frac{\pi}{3}x + \frac{\pi}{6}\right) + 2\), we have \(B = \frac{\pi}{3}\).
The period of \(g(x)\) is given by \(\frac{\pi}{|B|}\), so:
\(\text{Period} = \frac{\pi}{\left|\frac{\pi}{3}\right|} = \frac{\pi}{\frac{\pi}{3}} = \pi \cdot \frac{3}{\pi} = 3\)
Therefore, the period of the function \(g(x)\) is 3.
Let \( M \) and \( m \) respectively be the maximum and the minimum values of \( f(x) = \begin{vmatrix} 1 + \sin^2x & \cos^2x & 4\sin4x \\ \sin^2x & 1 + \cos^2x & 4\sin4x \\ \sin^2x & \cos^2x & 1 + 4\sin4x \end{vmatrix}, \quad x \in \mathbb{R} \) for \( x \in \mathbb{R} \). Then \( M^4 - m^4 \) is equal to:
If \( \alpha>\beta>\gamma>0 \), then the expression \[ \cot^{-1} \beta + \left( \frac{1 + \beta^2}{\alpha - \beta} \right) + \cot^{-1} \gamma + \left( \frac{1 + \gamma^2}{\beta - \gamma} \right) + \cot^{-1} \alpha + \left( \frac{1 + \alpha^2}{\gamma - \alpha} \right) \] is equal to: