We know that the Speed of light : \(c = \frac{ω }{ k}\)
= \(\frac{4 × 10^8}{5} = 0.8 × 10^8\) \(m/sec\)
Therefore, \(E_0 = cB_0\)
=\( 0.8 × 10^8 × 5 × 10^{–6}\)
= \(400\) \(V/m\)
= \(4 × 10^{–2}\)
Hence, the correct option is (D): \(4 × 10^{–2}\; Vm^{-1}\)

Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.
The term used by scientists to describe the entire range of light that exists is the electrostatic spectrum. Light is a wave of alternating electric and magnetic fields. The propagation of light doesn't vary from waves crossing an ocean. Like any other wave, light also has a few fundamental properties that describe it. One is its frequency. The frequency is measured in Hz, which counts the number of waves that pass by a point in one second.
The electromagnetic waves that your eyes detect are visible light and oscillate between 400 and 790 terahertz (THz). That’s several hundred trillion times a second.