Step 1: Understanding the Rydberg Formula
The wavelength \( \lambda \) of spectral lines in hydrogen is given by the Rydberg formula:
\[
\frac{1}{\lambda} = R_H \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right)
\]
where \( R_H \) is the Rydberg constant, \( n_1 \) represents the lower energy level, and \( n_2 \) represents the upper energy level.
Step 2: Calculating the Minimum Wavelength of the Balmer Series
The Balmer series corresponds to transitions to \( n_1 = 2 \). The shortest wavelength occurs when \( n_2 = \infty \):
\[
\frac{1}{\lambda_{\text{min, Balmer}}} = R_H \left( \frac{1}{2^2} - 0 \right) = R_H \times \frac{1}{4}
\]
\[
\lambda_{\text{min, Balmer}} = \frac{4}{R_H}
\]
Step 3: Calculating the Maximum Wavelength of the Brackett Series
The Brackett series corresponds to transitions to \( n_1 = 4 \). The longest wavelength occurs when \( n_2 = 5 \):
\[
\frac{1}{\lambda_{\text{max, Brackett}}} = R_H \left( \frac{1}{4^2} - \frac{1}{5^2} \right)
\]
\[
= R_H \left( \frac{1}{16} - \frac{1}{25} \right) = R_H \left( \frac{25 - 16}{400} \right) = R_H \times \frac{9}{400}
\]
\[
\lambda_{\text{max, Brackett}} = \frac{400}{9R_H}
\]
Step 4: Calculating the Ratio
\[
\frac{\lambda_{\text{min, Balmer}}}{\lambda_{\text{max, Brackett}}} = \frac{\frac{4}{R_H}}{\frac{400}{9R_H}} = \frac{4 \times 9}{400} = \frac{36}{400} = \frac{9}{100}
\]
Thus, the correct answer is:
\[
\boxed{9:100}
\]