The reaction begins with the protonation of the double bond in 3-chloro-1-butene by HCl. Following Markovnikov’s rule, the proton adds to the carbon with more hydrogen atoms, forming a secondary carbocation:
The initially formed secondary carbocation undergoes a 1,2-hydride shift to form a more stable tertiary carbocation:
Total number of possible isomeric products: \( 1 + 3 = 4 \).
The total number of possible isomeric products is 4.
Draw the possible isomers of:
\[ [ \text{Co}(\text{en})_2\text{Cl}_2 ]^+ \]
The incorrect statements regarding geometrical isomerism are:
(A) Propene shows geometrical isomerism.
(B) Trans isomer has identical atoms/groups on the opposite sides of the double bond.
(C) Cis-but-2-ene has higher dipole moment than trans-but-2-ene.
(D) 2-methylbut-2-ene shows two geometrical isomers.
(E) Trans-isomer has lower melting point than cis isomer.
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: