To compute \( x^{32} \), we can use the technique of exponentiation by squaring, which reduces the number of multiplications required.
1. Direct Approach: If we were to compute \( x^{32} \) by repeated multiplication, we would multiply \( x \) by itself 31 times. This would require 31 multiplications.
2. Exponentiation by Squaring: Instead of multiplying repeatedly, we can break down the exponentiation: \[ x^{32} = (x^2)^{16} \] Now, we square the result: \[ x^2 = x \times x \quad (\text{1 multiplication}) \] \[ (x^2)^2 = x^4 \quad (\text{1 multiplication}) \] \[ (x^4)^2 = x^8 \quad (\text{1 multiplication}) \] \[ (x^8)^2 = x^{16} \quad (\text{1 multiplication}) \] \[ (x^{16})^2 = x^{32} \quad (\text{1 multiplication}) \] Hence, we perform 5 multiplications in total.
Conclusion:
The number of multiplications required to compute \( x^{32} \) is 5.
The rank of matrix \(\begin{bmatrix} k & -1 & 0 \\[0.3em] 0 & k & -1 \\[0.3em] -1 & 0 & k \end{bmatrix}\) is 2, for \( k = \)
If \(A = \begin{bmatrix} 4 & 2 \\[0.3em] -3 & 3 \end{bmatrix}\), then \(A^{-1} =\)
A two-port network is defined by the relation
\(\text{I}_1 = 5V_1 + 3V_2 \)
\(\text{I}_2 = 2V_1 - 7V_2 \)
The value of \( Z_{12} \) is:
An induction motor when started on load does not accelerate up to full speed but runs at \({\frac {1}{17}}\)th of the rated speed. The motor is said to be:
A 0 to 30 V voltmeter has an error of \(\pm 2\%\) of FSD. What is the range of readings if the voltage is 30V?