We start by simplifying the expression \( 5\sqrt{5} \times 5^3 \div 5^{-3/2} \):
\[
5\sqrt{5} = 5^{1 + 1/2} = 5^{3/2}
\]
Now the expression becomes:
\[
5^{3/2} \times 5^3 \div 5^{-3/2}
\]
Using the laws of exponents \( a^m \times a^n = a^{m+n} \) and \( \frac{a^m}{a^n} = a^{m-n} \), we combine the exponents:
\[
5^{3/2 + 3 - (-3/2)} = 5^{3/2 + 3 + 3/2} = 5^{6}
\]
Thus, \( a = 6 \), so the correct answer is (D) 4.