Let \( z = y^{\frac{1}{3}} \), then \( z^2 = y^{\frac{2}{3}} \), and the equation becomes:
\[
z^2 - 2z = 15
\]
Rearranging:
\[
z^2 - 2z - 15 = 0
\]
Factoring the quadratic equation:
\[
(z - 5)(z + 3) = 0
\]
Thus, \( z = 5 \) or \( z = -3 \). Since \( z = y^{\frac{1}{3}} \), we have:
\[
y^{\frac{1}{3}} = 5 \quad \Rightarrow \quad y = 25
\]
\[
y^{\frac{1}{3}} = -3 \quad \Rightarrow \quad y = -27
\]
Therefore, the solutions are \( y = 25 \) and \( y = -27 \).