The number of matrices
\(A=\begin{pmatrix} a & b \\ c & d \\ \end{pmatrix}\), where a,b,c,d ∈−1,0,1,2,3,…..,10
such that A = A-1, is ______.
The correct answer is 50
\(∵ A=\begin{bmatrix} a & b \\ c & d \\ \end{bmatrix}\) then \(A^2=\begin{bmatrix} a^2+bc & b(a+d) \\ c(a+d) & bc+d^2 \\ \end{bmatrix}\)
For A–1 must exist ad – bc≠ 0 …(i)
and A = A–1⇒A2 = I
∴ a2 + bc = d2 + bc = 1 …(ii)
and b(a + d) = c(a + d) = 0 …(iii)
Case I : When a = d = 0, then possible values of
(b, c) are (1, 1), (–1, 1) and (1, –1) and (–1, 1).
Total four matrices are possible.
Case II : When a = –d then (a, d) be (1, –1) or
(–1, 1).
Then total possible values of (b, c) are
(12 + 11) × 2 = 46.
∴ Total possible matrices = 46 + 4 = 50.
Let $ A = \begin{bmatrix} \alpha & -1 \\6 & \beta \end{bmatrix},\ \alpha > 0 $, such that $ \det(A) = 0 $ and $ \alpha + \beta = 1 $. If $ I $ denotes the $ 2 \times 2 $ identity matrix, then the matrix $ (1 + A)^5 $ is:
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to:
A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.