For a non-zero complex number $ z $, let $\arg(z)$ denote the principal argument of $ z $, with $-\pi < \arg(z) \leq \pi$. Let $\omega$ be the cube root of unity for which $0 < \arg(\omega) < \pi$. Let $$ \alpha = \arg \left( \sum_{n=1}^{2025} (-\omega)^n \right). $$ Then the value of $\frac{3 \alpha}{\pi}$ is _____.