We are asked to find the number of 3-digit numbers divisible by 6 but not divisible by 36.
A number is divisible by 6 if it is divisible by both 2 and 3. The first three-digit number divisible by 6 is 102, and the last three-digit number divisible by 6 is 996. To find the total number of 3-digit numbers divisible by 6, we use the formula for the number of terms in an arithmetic sequence: \[ \text{Number of terms} = \frac{\text{Last term} - \text{First term}}{\text{Common difference}} + 1 \] Substituting the values: \[ \text{Number of terms} = \frac{996 - 102}{6} + 1 = \frac{894}{6} + 1 = 149 + 1 = 150. \] Thus, there are 150 numbers divisible by 6.
A number is divisible by 36 if it is divisible by both 4 and 9. The first three-digit number divisible by 36 is 108, and the last three-digit number divisible by 36 is 972. Using the same formula for the number of terms: \[ \text{Number of terms} = \frac{972 - 108}{36} + 1 = \frac{864}{36} + 1 = 24 + 1 = 25. \] Thus, there are 25 numbers divisible by 36.
The required number of 3-digit numbers that are divisible by 6 but not divisible by 36 is: \[ \text{Required number} = \text{(Divisible by 6)} - \text{(Divisible by 36)} = 150 - 25 = 125. \]
The required number of 3-digit numbers is \( \boxed{125} \).
Let the function, \(f(x)\) = \(\begin{cases} -3ax^2 - 2, & x < 1 \\a^2 + bx, & x \geq 1 \end{cases}\) Be differentiable for all \( x \in \mathbb{R} \), where \( a > 1 \), \( b \in \mathbb{R} \). If the area of the region enclosed by \( y = f(x) \) and the line \( y = -20 \) is \( \alpha + \beta\sqrt{3} \), where \( \alpha, \beta \in \mathbb{Z} \), then the value of \( \alpha + \beta \) is:
Match the following:
In the following, \( [x] \) denotes the greatest integer less than or equal to \( x \).
Choose the correct answer from the options given below:
If the domain of the function \( f(x) = \frac{1}{\sqrt{3x + 10 - x^2}} + \frac{1}{\sqrt{x + |x|}} \) is \( (a, b) \), then \( (1 + a)^2 + b^2 \) is equal to: