We are asked to find the number of 3-digit numbers divisible by 6 but not divisible by 36.
A number is divisible by 6 if it is divisible by both 2 and 3. The first three-digit number divisible by 6 is 102, and the last three-digit number divisible by 6 is 996. To find the total number of 3-digit numbers divisible by 6, we use the formula for the number of terms in an arithmetic sequence: \[ \text{Number of terms} = \frac{\text{Last term} - \text{First term}}{\text{Common difference}} + 1 \] Substituting the values: \[ \text{Number of terms} = \frac{996 - 102}{6} + 1 = \frac{894}{6} + 1 = 149 + 1 = 150. \] Thus, there are 150 numbers divisible by 6.
A number is divisible by 36 if it is divisible by both 4 and 9. The first three-digit number divisible by 36 is 108, and the last three-digit number divisible by 36 is 972. Using the same formula for the number of terms: \[ \text{Number of terms} = \frac{972 - 108}{36} + 1 = \frac{864}{36} + 1 = 24 + 1 = 25. \] Thus, there are 25 numbers divisible by 36.
The required number of 3-digit numbers that are divisible by 6 but not divisible by 36 is: \[ \text{Required number} = \text{(Divisible by 6)} - \text{(Divisible by 36)} = 150 - 25 = 125. \]
The required number of 3-digit numbers is \( \boxed{125} \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
The maximum speed of a boat in still water is 27 km/h. Now this boat is moving downstream in a river flowing at 9 km/h. A man in the boat throws a ball vertically upwards with speed of 10 m/s. Range of the ball as observed by an observer at rest on the river bank is _________ cm. (Take \( g = 10 \, {m/s}^2 \)).