Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hooke’s law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity): 
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
A determinant can be defined in many ways for a square matrix.
The first and most simple way is to formulate the determinant by taking into account the top-row elements and the corresponding minors. Take the first element of the top row and multiply it by its minor, then subtract the product of the second element and its minor. Continue to alternately add and subtract the product of each element of the top row with its respective min or until all the elements of the top row have been considered.
For example let us consider a 1×1 matrix A.
A=[a1…….an]
Read More: Properties of Determinants
Second Method to find the determinant:
The second way to define a determinant is to express in terms of the columns of the matrix by expressing an n x n matrix in terms of the column vectors.
Consider the column vectors of matrix A as A = [ a1, a2, a3, …an] where any element aj is a vector of size x.
Then the determinant of matrix A is defined such that
Det [ a1 + a2 …. baj+cv … ax ] = b det (A) + c det [ a1+ a2 + … v … ax ]
Det [ a1 + a2 …. aj aj+1… ax ] = – det [ a1+ a2 + … aj+1 aj … ax ]
Det (I) = 1
Where the scalars are denoted by b and c, a vector of size x is denoted by v, and the identity matrix of size x is denoted by I.
Read More: Minors and Cofactors
We can infer from these equations that the determinant is a linear function of the columns. Further, we observe that the sign of the determinant can be interchanged by interchanging the position of adjacent columns. The identity matrix of the respective unit scalar is mapped by the alternating multi-linear function of the columns. This function is the determinant of the matrix.