Let's determine the geometry of each molecule:
1. $ BrF_5 $: Bromine has 7 valence electrons. In $ BrF_5 $, there are 5 bond pairs and 1 lone pair. This gives a steric number of 6, which corresponds to an octahedral electron geometry. With 5 bonding pairs and 1 lone pair, the molecular geometry is square pyramidal.
2. $ XeOF_4 $: Xenon has 8 valence electrons. In $ XeOF_4 $, there is one double bond to oxygen and four single bonds to fluorine. There is also one lone pair. This results in a steric number of 6, corresponding to octahedral electron geometry. With 5 bonding pairs and 1 lone pair, the molecular geometry is also square pyramidal.
3. $ SbF_5 $: Antimony has 5 valence electrons. In $ SbF_5 $, there are 5 bond pairs and no lone pairs. The steric number is 5, which corresponds to a trigonal bipyramidal electron and molecular geometry.
4. $ PCl_5 $: Phosphorus has 5 valence electrons. In $ PCl_5 $, there are 5 bond pairs and no lone pairs. The steric number is 5, which corresponds to a trigonal bipyramidal electron and molecular geometry.
Conclusion: Among the given molecules, only $ BrF_5 $ and $ XeOF_4 $ have square pyramidal geometry.
Final Answer:
The final answer is $ BrF_5\ \&\ XeOF_4 $.
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
The magnitude of heat exchanged by a system for the given cyclic process ABC (as shown in the figure) is (in SI units):
