Molar mass of \(\text{H}_3\text{PO}_4 = 98 \, \text{g/mol}\)
Mass of solution = \(1 \times 1000 \times 1.54 = 1540 \, \text{g}\)
Mass of \(\text{H}_3\text{PO}_4 = 0.7 \times 1540 = 1078 \, \text{g}\)
Moles of \(\text{H}_3\text{PO}_4 = \frac{1078}{98} = 11 \, \text{moles}\)
Thus, molarity = \(11 \, \text{M}\).
Match List I with List II:
Choose the correct answer from the options given below:
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.