Molar mass of \(\text{H}_3\text{PO}_4 = 98 \, \text{g/mol}\)
Mass of solution = \(1 \times 1000 \times 1.54 = 1540 \, \text{g}\)
Mass of \(\text{H}_3\text{PO}_4 = 0.7 \times 1540 = 1078 \, \text{g}\)
Moles of \(\text{H}_3\text{PO}_4 = \frac{1078}{98} = 11 \, \text{moles}\)
Thus, molarity = \(11 \, \text{M}\).
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32