We are given \( z = \frac{-2 + i}{(1 - 2i)^2} \), and we need to find the modulus of the conjugate of \( z \).
Step 1: First, compute the denominator:
\[
(1 - 2i)^2 = (1^2 - 2 \times 1 \times 2i + (2i)^2) = 1 - 4i + (-4) = -3 - 4i
\]
Step 2: Now, the conjugate of \( z \) is:
\[
\overline{z} = \frac{-2 - i}{(-3 + 4i)}
\]
Step 3: To find the modulus of the conjugate of \( z \), we use the formula for the modulus of a complex number \( \frac{a}{b} \), which is \( \frac{|a|}{|b|} \).
The modulus of the numerator is:
\[
| -2 - i | = \sqrt{(-2)^2 + (-1)^2} = \sqrt{4 + 1} = \sqrt{5}
\]
The modulus of the denominator is:
\[
| -3 + 4i | = \sqrt{(-3)^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5
\]
Step 4: Therefore, the modulus of the conjugate of \( z \) is:
\[
\left| \overline{z} \right| = \frac{\sqrt{5}}{5} = \frac{1}{\sqrt{5}}
\]
Thus, the correct answer is \( \frac{1}{\sqrt{5}} \).