The energy liberated is given by:
\[ E = \Delta m c^2 \]
Substituting the values:
\[ E = 0.4 \times 10^{-3} \times (3 \times 10^8)^2 \]
\[ E = 3600 \times 10^7 \, \text{kWs} \]
Converting to kWh:
\[ E = \frac{3600 \times 10^7 \, \text{kWh}}{3600} = 1 \times 10^7 \, \text{kWh} \]
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32