The energy liberated is given by:
\[ E = \Delta m c^2 \]
Substituting the values:
\[ E = 0.4 \times 10^{-3} \times (3 \times 10^8)^2 \]
\[ E = 3600 \times 10^7 \, \text{kWs} \]
Converting to kWh:
\[ E = \frac{3600 \times 10^7 \, \text{kWh}}{3600} = 1 \times 10^7 \, \text{kWh} \]
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $