Step 1: Energy Calculation using \( E = \Delta mc^2 \)
The energy \( E \) is calculated using Einstein's famous equation \( E = \Delta mc^2 \), where:
\[ E = 0.4 \times 10^{-3} \times (3 \times 10^8)^2. \]
Simplifying, we get:
\[ E = 3600 \times 10^7 \, \text{kWs}. \]
Step 2: Converting to kWh
To convert from kilowatt-seconds (kWs) to kilowatt-hours (kWh), we divide by 3600 (the number of seconds in an hour):
\[ \frac{3600 \times 10^7}{3600} \, \text{kWh} = 1 \times 10^7 \, \text{kWh}. \]
The energy liberated is given by:
\[ E = \Delta m c^2 \]
Substituting the values:
\[ E = 0.4 \times 10^{-3} \times (3 \times 10^8)^2 \]
\[ E = 3600 \times 10^7 \, \text{kWs} \]
Converting to kWh:
\[ E = \frac{3600 \times 10^7 \, \text{kWh}}{3600} = 1 \times 10^7 \, \text{kWh} \]
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 