1. Calculate Total Mass of Reactants (\(m_r\)):
\[ m_r = 235.0439 \, \text{u}. \]
2. Calculate Total Mass of Products (\(m_p\)):
\[ m_p = 139.9054 + 93.9063 + 1.0086 = 234.8203 \, \text{u}. \]
3. Calculate Disintegration Energy (\(Q\)):
The disintegration energy \(Q\) is given by:
\[ Q = (m_r - m_p)c^2. \]
Substitute the values:
\[ Q = (235.0439 - 234.8203) \times 931. \]
Simplify:
\[ Q = 0.2236 \times 931 = 208.1716 \, \text{MeV}. \]
Answer: \(208 \, \text{MeV}\)
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).
O\(_2\) gas will be evolved as a product of electrolysis of:
(A) an aqueous solution of AgNO3 using silver electrodes.
(B) an aqueous solution of AgNO3 using platinum electrodes.
(C) a dilute solution of H2SO4 using platinum electrodes.
(D) a high concentration solution of H2SO4 using platinum electrodes.
Choose the correct answer from the options given below :
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: