1. Calculate Total Mass of Reactants (\(m_r\)):
\[ m_r = 235.0439 \, \text{u}. \]
2. Calculate Total Mass of Products (\(m_p\)):
\[ m_p = 139.9054 + 93.9063 + 1.0086 = 234.8203 \, \text{u}. \]
3. Calculate Disintegration Energy (\(Q\)):
The disintegration energy \(Q\) is given by:
\[ Q = (m_r - m_p)c^2. \]
Substitute the values:
\[ Q = (235.0439 - 234.8203) \times 931. \]
Simplify:
\[ Q = 0.2236 \times 931 = 208.1716 \, \text{MeV}. \]
Answer: \(208 \, \text{MeV}\)
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: